K8VFO February 7, 2019

- ✓ These are all free to use
- ✓ There are many more available
- $\checkmark\,$  This is a quick overview of my favorites
- $\checkmark$  If interest in more detail, a more in-depth presentation can be done

- RF Filter Design
- Impedance Matching
- Schematic and Printed Circuit Design
- Circuit Simulation
- Antenna Design
- Audio Signal Analysis
- Toroid Inductors

**RF** Filter Design

□ OptLowPass Filter Designer (Tonne Software) [Windows]

□ SVC Filter Designer (Tonne Software) [Windows]

- □ *Elsie* (Tonne Software) [Windows]
- Crystal Filter Design (DJ6EV) [Windows]

## OptLowpass

#### Quick and easy low pass filters for Hams

Welcome to OptLowpass !

# **OptLowpass**

The transmitter output lowpass filter designer for the serious radio amateur

| 5               | Select one | :             |
|-----------------|------------|---------------|
| 2 meter band    |            | Last session  |
| 6 meter band    |            | Design Wizard |
| 10 meter band   |            |               |
| 12 meter band   |            | Exit / End    |
| 15 meter band   |            |               |
| 17 meter band   |            |               |
| 20 meter band   |            |               |
| 30 meter band   |            |               |
| 40 meter band   |            |               |
| 60 meter band   |            |               |
| 80 meter band   |            |               |
| 160 meter band  |            |               |
| 600 meter band  |            |               |
| 2200 meter band |            |               |

#### Version 2.05 Copyright 2016 Jim Tonne W4ENE

www.TonneSoftware.com

This program is based on the author's article "Harmonic Filters, Improved" which was in the September/October 1998 issue of QEX, an ARRL publication.



## OptLowpass



## SVC Filter Designer

#### Quick and easy low pass and high pass filter design.



Design page



28.423MHz



## SVC Filter Designer





## Elsie

- Powerful tool for filter design
- You set the limits, Elsie does the rest!





| 📆 Crystal Ladder Filter Calculator "DISHAL" Vers                                                              | 2.0.5.2 HF Tools by DJ6EV — |                                    |                                   |                     | – 🗆 X                              |                                 |
|---------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------|-----------------------------------|---------------------|------------------------------------|---------------------------------|
| SaveWindow Cohn QER(G3UUR) Xtal Tabl                                                                          | LC-Mato                     | h Cs2Cp                            | Colours                           | Info He             | lp                                 |                                 |
| Select either Lm or Cm of xtal      11997.179        C Lm      10.806072      fF        Series Freq. fs [kHz] | 3.1<br>Cp (pF)<br>Br        | 2.8<br>B3db [kHz]<br>max=10.070 kł | <b>0.01</b><br>PB ripp<br>Hz (03d | de # of ><br>b] (21 | tals Display Freq<br>4) Span [kHz] | Calculate<br>LOG>Lin            |
| Xtal Parameters                                                                                               | Odb 🔽                       | 1                                  |                                   |                     |                                    |                                 |
| Lm = 16.28599 mH fs= 11997.179 kHz                                                                            |                             |                                    |                                   |                     |                                    |                                 |
| Lm = 10.806072 H- fp= 12018.071 kHz                                                                           |                             |                                    | ·                                 |                     |                                    |                                 |
| Filter Parameters                                                                                             | 20.4                        |                                    |                                   |                     |                                    |                                 |
| Impedance [Ohm]: 332.0 # of Xtals: 4                                                                          | -20ab -                     |                                    |                                   | 1                   |                                    |                                 |
| Center Frequency [kHz]: 11999.041                                                                             | -30db -                     |                                    |                                   |                     |                                    |                                 |
| BW ( 6db): 3.11 kHz BW ( 60db): 15.66 kHz                                                                     |                             |                                    |                                   |                     |                                    |                                 |
| BW ( 20db): 4.56 kHz BW ( 80db): 40.73 kHz                                                                    | -40db -                     |                                    |                                   | /                   | - <i>f</i>                         |                                 |
| BW ( 40db): 8.08 kHz BW (100db):                                                                              |                             |                                    | 1                                 |                     | $/     \rangle$                    |                                 |
| Coupling (Shunt) Capacitances [pF]                                                                            |                             |                                    |                                   | 7                   | (                                  |                                 |
| Ck12= 51.8 Ck56=                                                                                              | -60db                       |                                    |                                   |                     |                                    |                                 |
| Ck23= 70.6 Ck67=                                                                                              | 0000                        |                                    |                                   | $-A^{-}$            |                                    |                                 |
| Ck34= Ck78=                                                                                                   | -70db                       |                                    |                                   | <u> </u>            |                                    | <u>\</u>                        |
| Ck45=                                                                                                         |                             |                                    |                                   |                     |                                    | $\mathbf{X}$                    |
| Tuning (Series) Capacitances (pF)                                                                             | -80db                       |                                    |                                   |                     |                                    |                                 |
| equiv. Freq. Uffset [Hz]                                                                                      | 0046                        |                                    |                                   |                     |                                    | $\langle \langle \cdot \rangle$ |
| Cs3=                                                                                                          | -3000 -                     |                                    | - 4                               |                     |                                    | 1 N 1                           |
| Cs4=                                                                                                          | -100db                      |                                    |                                   |                     |                                    |                                 |
| Cs5=                                                                                                          | -                           | 15.00 kHz                          |                                   | fm = 1              | 1999.041 kHz                       | +15.00 kHz                      |
| C • 7                                                                                                         |                             |                                    | - Ultimate                        | e Attenuation       | i = -95.6 db                       | Show Table                      |
|                                                                                                               |                             |                                    | (Symme                            | etry Axis)          |                                    | dj6ev                           |



| 📆 Crystal Ladder Filter Calculator "DISHAL" Vers. 2                                                                            | .0.5.2 HF Tools by DJ6EV         |                                                      |                          |                                         | – 🗆 X                                 |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------|--------------------------|-----------------------------------------|---------------------------------------|
| SaveWindow Cohn QER(G3UUR) Xtal Table                                                                                          | LC-Match Cs                      | 2Cp Colours Info                                     | o Help                   |                                         |                                       |
| Select either Lm or Cm of xtal      11997.179        C Lm      10.806072      fF        G Cm      F      Series Freq. fs [kHz] | 3.1 2<br>Cp (pF) B3db<br>Bmax=10 | . <b>8 0.01</b><br>[kHz] PB ripple<br>070 kHz [03db] | 4<br># of xtals<br>(214) | <b>30</b><br>Display Freq<br>Span [kHz] | Calculate<br>L0G>Lin                  |
| Xtal Parameters                                                                                                                |                                  |                                                      |                          |                                         |                                       |
| Lm = 16.28599 mH fs= 11997.179 kHz                                                                                             |                                  |                                                      |                          |                                         |                                       |
| Cm = 10.806072 fF fp= 12018.071 kHz                                                                                            | -10db                            |                                                      |                          |                                         |                                       |
| Filter Parameters                                                                                                              | 1                                |                                                      |                          |                                         |                                       |
| Type: Chebychev PB-Ripple: 0.01db                                                                                              | -20db                            |                                                      |                          |                                         |                                       |
| Impedance [Ohm]: 332.0 # of Xtals: 4                                                                                           |                                  |                                                      | 1                        |                                         |                                       |
| Center Frequency [kHz]: 11999.041                                                                                              | -30db                            |                                                      | /{ -                     |                                         |                                       |
| BW ( 6db): 3.11 kHz BW ( 60db): 15.66 kHz                                                                                      |                                  |                                                      |                          |                                         |                                       |
| BW ( 20db): 4.56 kHz BW ( 80db): 40.73 kHz                                                                                     | -4Udb                            |                                                      | 1111                     | <u>}</u>                                |                                       |
| BW ( 40db): 8.08 kHz BW (100db):                                                                                               | FOUL                             |                                                      |                          |                                         |                                       |
| Coupling (Shunt) Capacitances [pF]                                                                                             |                                  |                                                      | 171                      |                                         |                                       |
| Ck12= 51.8 Ck56=                                                                                                               | -60db                            |                                                      |                          |                                         |                                       |
| Ck23= 70.6 Ck67=                                                                                                               |                                  |                                                      | /                        |                                         |                                       |
| Ck34= Ck78=                                                                                                                    | -70db                            |                                                      |                          | <u> </u>                                |                                       |
| Ck45=                                                                                                                          |                                  |                                                      |                          |                                         |                                       |
| Tuning (Series) Canacitances (nE)                                                                                              | -80db                            |                                                      |                          |                                         | · · · · · · · · · · · · · · · · · · · |
| equiv. Freq. Offset (Hz)                                                                                                       |                                  |                                                      |                          |                                         | $\langle \rangle$                     |
| Cs1= 70.6 785                                                                                                                  | -90db                            |                                                      |                          |                                         | ····\                                 |
| Cs3=                                                                                                                           |                                  |                                                      |                          |                                         |                                       |
| Cs4=                                                                                                                           | -100db                           |                                                      | m - 11999                | 041 kHz                                 | +15.00 kHz                            |
| Себ=                                                                                                                           | -15.00                           |                                                      | m - 11333                |                                         | +13.00 KH2                            |
| Cs7=                                                                                                                           |                                  | Ultimate Atte  (Summetry A)                          | nuation = -5             | 15.6 db S                               | how Table                             |
|                                                                                                                                |                                  | (Symmetry A                                          | xisj                     |                                         | dj6ev                                 |



Impedance Matching

Smith Chart

- Iowa Hills Software
- Windows
- Iowa Hills Software also has some good filter design tools

## Iowa Hills Smith Chart

Smith Charts can be daunting – but this tool makes it easy

Start with simple impedance matching – read help file to do more complex stuff



Schematic and PCB Design

KiCad

**Public License** 

- Windows, Linux, Mac
- Schematic Diagrams
- PCB Layout

# KiCad

3

Schematic Diagrams Printed Circuit Board Design Open Source Very Active Development with Major Corporate Support:

TED -

- University of Grenoble
- SoftPLC
- CERN (European Organization for Nuclear Research)
- Raspberry Pi Foundation
- Arduino LLC
- Digi-Key Electronics

Runs on Windows, Linux,



#### KiCad



Inches

#### KiCad



**Circuit Simulation** 

LTspice

Linear Technology Corporation (owned by Analog Devices) Windows, Linux, Mac

• Circuit Simulation



Audio Analysis

*Audacity* Public License Windows, Linux, Mac

- Audio Recording
- Audio Editing
- Audio Analysis

#### Audacity – audio recording, editing, and analysis



- recording and evaluating demodulated signals
- digital signal investigation
- audio spectrum analysis
- see what you
  sound like, tweak
  your audio stages

Example use of Audacity

- during design of a Finite Impulse Response Digital Filter
- for 1200 baud RF modem
- to use AX.25 in an APRS transmitter



- repurpose the digital filter in a Si446x ISM transmitter chip for APRS
- APRS uses Bell 202 1200 baud modem standard
- Audio-FSK using 1200 Hz and 2200 Hz tones
- → need pre-emphasis on the 2200 Hz tone
- ➔ need smooth transition between tones no discontinuities
- ➔ attenuate audio harmonics
- digital filter defined by nine numbers feeding into the filter algorithm
- how to evaluate the results? look at the received/ demodulated waveform

#### Finite Impulse Response Filter Design for Si446x Transmitter



Coefficients: 9, 30, 48, 22, -50, -99, -46, 76, 142

Phase reversal issue

#### Finite Impulse Response Filter Design for Si446x Transmitter



Tested, works, no phase reversal, nice audio

Coefficients: 3,24,42,32,-9,-33,5,83,123

#### Si4463 with adjusted FIR filter – 1200 baud modem

#### Waveform of receiver output of FLEX 1500 and transverter



#### Si4463 with adjusted FIR filter – 1200 baud modem

### Spectral analysis of receiver output of FLEX 1500 and transverter



#### Si4463 with adjusted FIR filter – 1200 baud modem

### Spectral analysis of receiver output of FLEX 1500 and transverter



Antenna Design

*4nec2* Arie Voors Windows, Linux-Wine

- Antenna Modeling
- Radiation Patterns
- Antenna Currents



**Toroid Inductors** 

*kitsandparts.com* Toroid Inductor Calculator

#### KitsAndParts.com -- toroid inductor calculator

#### Specs for **FT37-43** RF Toroids

| FB-43-101  | BLN1728-8  | FT23-43 | FT114-43 | T25-2         | T80-2   |
|------------|------------|---------|----------|---------------|---------|
| FB-43-2401 | BN-43-2402 | FT37-43 | FT114-61 | T25-6         | T80-6   |
| FB-73-2401 | BN-61-2402 | FT37-61 | FT140-43 | T30-2         | T80-10  |
| FB-43-4852 | BN-43-1502 | FT37-67 | FT140-61 | T30-6         | T80-17  |
| FB-43-7351 | BN-61-1502 | FT50-43 | FT140-77 | T30-10        | T94-2   |
| FB-31-1020 | BN-43-302  | FT50-61 | FT240-31 | T37-0         | T94-6   |
|            | BN-61-302  | FT50-75 | FT240-43 | T37-1         | T94-10  |
|            | BN-43-202  | FT50-J  | FT240-52 | T37-2         | T106-0  |
|            | BN-61-202  | FT82-43 | FT240-K  | T37-6         | T106-2  |
|            | BN-73-202  | FT82-61 | FT240-61 | T37-7         | T106-6  |
|            | BN-43-3312 |         | FT290-43 | T37-10        | T130-0  |
|            | BN-43-7051 |         | XXX-XX   | T37-17        | T130-1  |
|            | BN-61-002  |         |          | T44-2         | T130-2  |
|            |            |         |          | T44-6         | T130-6  |
|            |            |         |          | T50-1         | T130-17 |
|            |            |         |          | T50-2         | T157-2  |
|            |            |         |          | T50-3         | T157-17 |
|            |            |         |          | T50-6         | T184-17 |
|            |            |         |          | T50-7         | T200-2  |
|            |            |         |          | T50-10        | T200-6  |
|            |            |         |          | T50-17        | T225-2B |
|            |            |         |          | T68-1         |         |
|            |            |         |          | T68-2         |         |
|            |            |         |          | T68-6         |         |
|            |            |         |          | <b>T68</b> -7 |         |
|            |            |         |          | T68-10        |         |

| Physical Dimensions                                                                                                           |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                                               |  |  |  |  |  |
| OD(A) = 0.375 in / 9.5 mm +/- 0.25 mm<br>ID(B) = 0.187 in. / 4.75 mm +/- 0.10 mm<br>Ht(C) = 0.125 in. / 3.3 mm +/- 0.25 mm    |  |  |  |  |  |
| A <sub>L</sub> =350 +/- 20 % uH=(A <sub>L</sub> *Turns <sup>2</sup> )/1000<br>Actual measured AL using 10 turns #28 wire      |  |  |  |  |  |
| Temperature Stability (ppm /°C) = 12500                                                                                       |  |  |  |  |  |
| Color Code = shiny black                                                                                                      |  |  |  |  |  |
| Application Freq Range<br>Wideband Transformers 5 - 400 MHz<br>Power Transformers 0.5 - 30 MHz<br>RFI Suppression 5 - 500 MHz |  |  |  |  |  |
| Orders and Pricing<br>www.kitsandparts.com                                                                                    |  |  |  |  |  |
|                                                                                                                               |  |  |  |  |  |

|               |              | Turns   | -Length Ca<br>Includes 1 inc | lculator f<br>h / 2.5 cm p | or FT37-43<br>big-tails    |      |       |
|---------------|--------------|---------|------------------------------|----------------------------|----------------------------|------|-------|
| MHz<br>14.000 | uH<br>154.35 | pF<br>1 | ohms<br>13577.3              | turns<br>21.0              | inches - cm<br>12.5 - 31.8 | Calc | Clear |
|               |              | enter   | uH to Calc                   | number                     | of turns, or               |      |       |

enter uH to Calc number of turns, or enter number of turns to Calc uH, or enter two (2) items: MHz, uH, pF, ohms or turns to Calc all values.

Software tools make ham radio design much easier Many other tools available Excellent design videos on YouTube (i.e., ZL2CTM, K7AGE, W2AEW)

Try some designs of your own:

- 1. Draft design (or start with someone else's design)
- 2. Simulate in software, tweak as necessary
- 3. Build and enjoy!