
An Introduction to
Microprocessors

By Larry Macklin, N8CGP

 A “Computer On A Chip”
 The world’s first microprocessor- the 4004

was invented in 1971 by Intel
 In the 45 years since, microprocessors have

become smaller, faster, more powerful,
cheaper, more prevalent, and easier to use.

 Let’s look at what is inside a
microprocessor. But first, let’s review the
type of numbers that microprocessors use.

Microprocessors

 Microprocessors operate using binary (two-
state) logic

 It is much easier for electronics to detect
the presence or absence of a voltage (two
states) than it is to measure the magnitude
of a voltage and assign a value to it from a
range of discrete steps.

 Thus, microprocessors perform all internal
calculations and logic operations using a
Base 2 numbering system

Binary Logic & Numbers

 The Base of a number system specifies how
many unique values are contained in one digit.

 We normally use a Base 10 numbering system
in our everyday lives.

 There are 10 values within a single digit (0-9)
 In a Base 2 (binary) numbering system, there

are 2 values within a single digit (0-1)
 When counting upwards, when we reach the

largest value for a digit, we carry a “1” into
the next digit to the left.

Numbering System Basics

 Each digit position corresponds to an
exponential power of the Base

For Base 10

10⁴ 1 x 104 = 1 x 10000 = 10000
103 9 x 103 = 9 x 1000 = 9000
102 4 x 102 = 4 x 100 = 400
101 0 x 101 = 0 x 10 = 00
100 3 x 100 = 3 x 1 = 3

 1 9 4 0 3.

Numbering System Basics

 Each digit position corresponds to an
exponential power of the Base

For Base 2

2⁴ 1 x 24 = 1 x 16 = 16
23 0 x 23 = 0 x 8 = 0
22 1 x 22 = 1 x 4 = 4
21 1 x 21 = 0 x 2 = 0
20 1 x 20 = 1 x 1 = 1

 1 0 1 0 1.

Numbering System Basics

 Base 2 compared to Base 10
◦ A Base 2 number usually requires more digits to represent

the same value as a Base 10 number
◦ Base 2 (binary) values are easier for the microprocessor to

understand
◦ Base 2 values are harder for humans to understand
◦ Base 2 doesn’t use fractions! 0/0, 0/1, 1/0, 1/1

 Binary Definitions
◦ One Binary digIT is called a BIT
◦ A group of 4 bits is called a NIBBLE
◦ A group of 8 bits is called a BYTE (2 nibbles = 1 byte)
◦ A BIT may represent a logic state (on/off or true/false) or a number

Numbering System Basics

Binary Base 10 Base 16
 0 0 0
 1 1 1
 1 0 2 2
 1 1 3 3
 1 0 0 4 4
 1 0 1 5 5
 1 1 0 6 6
 1 1 1 7 7
1 0 0 0 8 8
1 0 0 1 9 9
1 0 1 0 10 A
1 0 1 1 11 B
1 1 0 0 12 C
1 1 0 1 13 D
1 1 1 0 14 E
1 1 1 1 15 F

Counting in Base 2

 In order to reduce the length of a binary number,
we can group 4 binary digits (bits) together and
represent them with a single Base 16 digit.

 215 212 211 28 27 24 23 20

1 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1

9 F 7 1

163 162 161 160

 = 9 x 4096 = 36864
 = F x 256 = 3840
 = 7 x 16 = 112
 = 1 x 1 = 1

Binary Shorthand-
Hexadecimal

 Data Bus
 Address Bus
 Program Memory
 Data Memory
 Program Counter
 Instruction Register & Decoder
 Arithmetic Logic Unit
 Accumulator Register
 Flag Register
 General Purpose Registers
 Stack Pointer
 Clock
 Control Inputs & Outputs
 Program Instructions
 Input & Output Peripherals

Components of a
Microprocessor System

Microprocessor System

Control Signals

Data Bus

Address Bus

ROM RAM
Parallel

I/O
Serial

I/O

Microprocessor Internal
Diagram

 Microprocessor instructions are very low-level
and simple.

 The instruction set is specific to the hardware
architecture of the microprocessor. Thus, each
microprocessor model has a unique instruction
set.

 Instructions are coded as groups of binary
digits. The groups are usually a multiple of 8
bits.

 The binary value for each instruction is called
its operational code, or opcode.

Microprocessor
Instructions

 For our example 8080 processor, the
instructions are classified as follows:
◦ Move, Load, & Store
◦ Stack Operations
◦ Jump Instructions
◦ Call & Return
◦ Increment & Decrement
◦ Add & Subtract
◦ Logical
◦ Rotate/Shift
◦ Input & Output
◦ Special & Control

Microprocessor
Instructions

Instruction Execution

Program Memory
1000 06 MVIB,00
1001 00
1002 3E MVIA,00
1003 00
1004 3C INRA
1005 C2 JNZ
1004
1006 10
1007 04
1008 CD Call
100E
1009
100A
100B C3 JMP
1002
100C 10
100D 02
100E 04 INRB
100F 78 MOV A,B
1010 D3 OUT,20
1011 20
1012 C9 RET
Stack
2FFC
2FFD
2FFE
2FFF

PIC 24FV16KM204 Block Diagram

 Three methods for creating the software
instructions (a.k.a. The Program)

 Manual Machine Coding
◦ - You supply the Binary Operation Codes
◦ - You keep track of the memory location for each instruction
◦ - You keep track of register and stack usage
◦ - Program jumps are to absolute addresses, not labels
◦ - Requires knowledge of the processor architecture
◦ - Very specific to one microprocessor model
◦ - Tedious and error-prone
◦ - Difficult to make changes
◦ - Not easy to debug & document

Generating Program
Instructions

 Assembler Software
◦ - You write the program steps as symbols or Mnemonics
◦ - The assembler provides the op codes
◦ - The assembler software keeps track of the addresses
◦ - You keep track of register and stack usage
◦ - Labels are used identify specific instructions
◦ - Program jumps are made to labels, not addresses
◦ - Requires knowledge of the processor architecture
◦ - Usually specific to one microprocessor family
◦ - Less tedious and error-prone than machine coding
◦ - Easier to make changes
◦ - Easier to debug & document
◦ - Assembler software is specific to the microprocessor model
◦ - Debugging and emulator software tools are often available as part of

the assembler software package.
◦ - Typically used for timing or resource-critical applications

Generating Program
Instructions

 High-Level Language & Interpreter/Compiler
Software
◦ - Program steps are written using languages such as Basic, Fortran, C,

etc.
◦ - Program steps use standard verbs, commands, and syntax for that

language.
◦ - Labels and variables are used rather than referring to specific

instructions, registers, or memory locations.
◦ - Program steps are not specific to any microprocessor model or family.
◦ - Author needs no knowledge of the underlying processor architecture
◦ - Requires knowledge of the language vocabulary & syntax
◦ - Faster to write, modify, debug, and document
◦ - Only the compiler portion of the software is specific to the

microprocessor model or family.
◦ - Debugging and emulator software tools are usually available as part

of the compiler software package.

Generating Program
Instructions

 Thanks for your attention!

Questions?

	Slide 1
	Microprocessors
	Binary Logic & Numbers
	Numbering System Basics
	Numbering System Basics
	Numbering System Basics
	Numbering System Basics
	Counting in Base 2
	Binary Shorthand- Hexadecimal
	Components of a Microprocessor System
	Microprocessor System
	Microprocessor Internal Diagram
	Microprocessor Instructions
	Microprocessor Instructions
	Instruction Execution
	PIC 24FV16KM204 Block Diagram
	Generating Program Instructions
	Generating Program Instructions
	Generating Program Instructions
	Questions?

