An Introduction to
Microprocessors

By Larry Macklin, NBCGP

Microprocessors

> A “Computer On A Chip”

> The world’s first microprocessor- the 4004
was invented in 1971 by Intel

> In the 45 years since, microprocessors have
become smaller, faster, more powerful,
cheaper, more prevalent, and easier to use.

> Let’s look at what is inside a
microprocessor. But first, let’'s review the

__ type of numbers that microprocessors use.

Binary Logic & Numbers

> Microprocessors operate using binary (two-
state) logic

> It Is much easier for electronics to detect
the presence or absence of a voltage (two
states) than it is to measure the magnitude
of a voltage and assign a value to it from a
range of discrete steps.

> Thus, microprocessors perform all internal
calculations and logic operations using a
Base 2 numbering system

Numbering System Basics

> The Base of a number system specifies how
many unique values are contained in one digit.

> We normally use a Base 10 numbering system
In our everyday lives.
> There are 10 values within a single digit (0-9)

> In a Base 2 (binary) numbering system, there
are 2 values within a single digit (0-1)

> When counting upwards, when we reach the
largest value for a digit, we carry a “1” into
the next digit to the left.

Numbering System Basics

> Each digit position corresponds to an
exponential power of the Base

For Base 10

— 1041 x104 = 1x 10000 = 10000
— 109 x103 = 9x 1000 = 9000
1024x102 = 4x 100= 400
10+0-x10t = Ox 10 = 00

1009 3r<—}6° 3 X 1= 3

194 0 3.

Numbering System Basics

> Each digit position corresponds to an
exponential power of the Base

For Base 2

24—1x24 = 1x 16 =16
— 23 0x2> = 0Xx = 0
221 x2> = 1X = 4
21 1 x21 = 00X = 0
20 1rd-“=1x = 1

101 01.

Numbering System Basics

> Base 2 compared to Base 10
° A Base 2 number usually requires more digits to represent
the same value as a Base 10 number
> Base 2 (binary) values are easier for the microprocessor to
understand
° Base 2 values are harder for humans to understand
° Base 2 doesn’t use fractions! 0/0, 0/1, 1/0, 1/1

g Blnary Definitions
° One Binary diglT is called a BIT
° A group of 4 bits is called a NIBBLE
° A group of 8 bits is called a BYTE (2 nibbles = 1 byte)
° A BIT may represent a logic state (on/off or true/false) or a number

Counting Iin Base 2

Binary Base 10 Base 16

0

1

10

11
100
101
110
111
1000
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14

OO UL &~ WNPEF O

TMOOW>OoOoNOOUDNWNRO

Binary Shorthand-
Hexadecimal

> In order to reduce the length of a binary number,
we can group 4 binary digits (bits) together and
represent them with a single Base 16 diqgit.

215 212 21 28 27 24 23 20
1001 1111 0111 0001

9 F 7 1

163 162 161 160
=9 x4096 = 36864
= Fx 256 = 3840
=7x 16 = 112

1 1

Components of a
Microprocessor System

> Data Bus
> Address Bus
> Program Memory
> Data Memory
> Program Counter
> Instruction Register & Decoder
> Arithmetic Logic Unit
> Accumulator Register
> Flag Register
> General Purpose Registers
> Stack Pointer
> Clock
> Control Inputs & Outputs
> Program Instructions
~__ " Input & Output Peripherals

Microprocessor System

8080A CPU FUNCTIONAL
BLOCK DIAGRAM

D, -D,
BI-DIRECTIONAL
DAT,

DATA BUS
BUFFER/LATCH

Data Bus

(8BIT)

(8BIT)
INTERNAL DATA BUS INTERNAL DATA BUS
C 3
> » >
. b 3
ACCUMULATOR TEMP. REG. INSTRUCTION
(sll | ml | REGISTER (8) MULTIPCEXER
w (8) z (8
FLAG) :
ELiEiELOPS s u TEMP REG. TEMP REG.
ACCUMULATOR - B @ C ®
LATCH (8] REG. REG.
INSTRUCTION 2
N ARITHMETIC prr D ® E ®)
A
Y| LoGic DECOOCH 2 REG. ReG. |
UNIT MACHINE W H (®) L | _REGISTER
(ALV) CYCLE 1] REG. REG. ARRAY
K ® ENCODING 2 i)
> | « STACK POINTER
v
' 16)
. PROGRAM COUNTER
DECIMAL | INCREMENTER/DECREMENTER
ADJUST A ADDRESS LATCH (16)
K <
TIMING
AND
CONTROL _1
(16)]
POWER == 312V ADDRESS BUFFER]
SUPPLIES | — = 45V DATA BUS INTERRUPT HOLD WAIT hj
o WRITE CONTROL CONTROL CONTROL CONTROL SYNC CLOCKS
gl Address Bus
— GND :

WR

DBIN INTE INT HOLD HOLDWAIT [SYNC o1 02 RESET
ACK READ

C

As- Ay
ADDRESS BUS

Control Signals

Parallel
I/0O

Microprocessor Internal

Diaaram

D,-D
7 0
8080A CPU FUNCTIONAL i~ DIRECT IONAL
BLOCK DIAGRAM DATﬁBUS
DATA BUS | _
BUFFER/LATCH
(8 BIT) (8 BIT)
INTERNAL DATA BUS INTERNAL DATA BUS
L 3
PN
4
ACCUMULATOR TEMP. REG. INSTRUCTION |we —
(8) (8) REGISTER (8) ' MELTIRLESES
A w (8) b 4 (8)
U t FLAG ® -
FLIP-FLOPS iL TEMP REG. TEMP REG.
ACCUMULATOR = B (8) C (8
LATCH (8 i < REG. REG.
A ARITHMETIC INSTRUCTION b D (@) E @)
LOGIC e = REG. REG.
UNIT MACHINE | w H (®) L ® | __REGISTER
(ALU) CYCLE 2. REG. REG. ARRAY
8 ENCODING 2 6!
- o« STACK POINTER
(16)
‘ PROGRAM COUNTER
DECIMAL | _ | INCREMENTER/DECREMENTER
ADJuST [> ADDRESS LATCH (16)
! TIMING
= AND
CONTROL K, N7
(16)
POWER | —= +12V ADDRESS BUFFER
SUPPLIES | —= 45V DATA BUS INTERRUPT HOLD WAIT nam
WRITE CONTROL CONTROL CONTROL CONTROL SYNC CLOCKS
— -5V .
=% T T I TITTTIT] L |
WR DBIN INTE INT HOLD HOLDWAIT SYNC o1 2 RESET PR
ACK READY 5

ADDRESS BUS

Microprocessor
Instructions

> Microprocessor instructions are very low-level
and simple.

> The instruction set is specific to the hardware
architecture of the microprocessor. Thus, each
microprocessor model has a unique instruction
set.

> Instructions are coded as groups of binary
digits. The groups are usually a multiple of 8
bits.

> The binary value for each instruction is called
- Its operational code, or opcode.

Microprocessor
Instructions

> For our example 8080 processor, the

Instructions are classified as follows:

° Move, Load, & Store

> Stack Operations

°Jump Instructions

° Call & Return

°Increment & Decrement

> Add & Subtract

° Logical

> Rotate/Shift

° Input & Output
~___ ° Special & Control

Instruction Execution

8080A CPU FUNCTIONAL

BLOCK DIAGRAM

INTERNAL DATA BUS

(8 BIT)

D7 E DO
BI-DIRECTIONAL
DATA BUS

{

DATA BUS

BUFFER/LATCH

g

(8 BIT)
INTERNAL DATA BUS

]

ACCUMULATOR
(8)

ACCUMULATOR
LATCH (8)

[}

= ‘

FLAG)
FLIP-FLOPS

{\

i

INSTRUCTION =

|

REGISTER (8)

i

DECIMAL
ADJUST

INSTRUCTION
DECODER

AND -

—

MULTIPLEXER

MACHINE
CYCLE
ENCODING

REGISTER SELECT

W (8) P2 (8)
TEMP REG. TEMP REG.
B (8) c (8
REG. REG.
D (8) E (8)
REG. REG.
H (8) L (8)
REG. REG.

STACK POINTER

(16)

PROGRAM COUNTER

(16)

DATA BUS INTERRUPT HOLD
WRITE CONTROL CONTROL CONTROL CONTROL SYNC CLOCKS

TIMING
AND
CONTROL

WAIT

POWER | — +12V
SUPPLIES | —= +5V

—w | [T TT T

WR DBIN INTE INT HOLD HOLDWAIT

T 1]

SYNC o1 02

ACK READY

 /

INCREMENTER/DECREMENTER

ADDRESS LATCH

(16)

=z

ADDRESS BUFFER

(16)

A5 - Ay
ADDRESS BUS

Program Memory

—> 2FFF

— 1000 06
1001 00
1002 3E
1003 00
= 1004 3C
1005 C2
1004
1006 10
1007 04
1008 CD
100E
REGISTER1009
—arraY 100A
100B C3
1002
100C 10
100D 02
100E 04
100F 78
1010 D3
11 20
o
2FFD
2FFE

MVIB,00
MVIA,00

INRA
INZ

Call

JMP

INRB
MOV A,B
OuT,20

RET

PIC 24FV16KM204 Block Diagram

PIC24FV16KM204 FAMILY

FIGURE 1-1:

PIC24FXXXXX FAMILY GENERAL BLOCK DIAGRAMS

PORTA
RA<D:7>

PORTB("
RB<0:15>

PORTC!
RC<9:0>

Interrupt Data Bus
Ccntro!ler‘ 7
16 16
PS8V and Table Data Latch
Data Access
Control Block Data RAM l
Counter Address
Repeat Latch
Control
ogic
16
16
Address Latch §
Program Memory
Data EEPROM
Data Latch
[Aoclness Bus]
%
Inst Latch
” Inst Register
Instruction
Deé:od‘a alnd
ontrol
Divide |
S * Contrg! Signals Support [16 x 16
17X17 | W Reg Array
OSCO/CLKO Timiny <> Power-u| Multiplier [*
OSCI/CLKI Generagon imer i L2 I
px Oscillator
o LI:RG!LF'RC -up Timer|
1 Paower-on
Reset
Precision
Band Gap —»| | Watchdog
Reference
DSWDT
Voltage »
Regulator BOR
Veap VDD, Vss MCLR
12-Bit
HLVD RTCC Timer1 MCCP1-3| | SCCP4/5 CTMU AD Comparators
F N F N
v v v h A v v b
Op Amp _36(M | | MSSP1/2 ART1/2
‘REFO 172 DAC1/2 CN1-36 (2C™. SPI) cLC1/2 u)
Note 1: All pins or features are not implemented on all device pinout configurations. See Table 1-5 for IO port
pin descriptions.

Generating Program
Instructions

> Three methods for creating the software
instructions (a.k.a. The Program)

> Manual Machine Coding
° - You supply the Binary Operation Codes
- You keep track of the memory location for each instruction
- You keep track of register and stack usage
- Program jumps are to absolute addresses, not labels
- Requires knowledge of the processor architecture
- Very specific to one microprocessor model
- Tedious and error-prone
- Difficult to make changes
- Not easy to debug & document

o

(@)

(0]

(@)

o

(0]

(@]

O

Generating Program

Instructions

> Assembler Software
° - You write the program steps as symbols or Mnemonics
° - The assembler provides the op codes
° - The assembler software keeps track of the addresses
° - You keep track of register and stack usage

- Labels are used identify specific instructions

- Program jumps are made to labels, not addresses

> - Requires knowledge of the processor architecture

- Usually specific to one microprocessor family

- Less tedious and error-prone than machine coding

- Easier to make changes

- Easier to debug & document

- Assembler software is specific to the microprocessor model

- Debugging and emulator software tools are often available as part of
the assembler software package.

= - Typically used for timing or resource-critical applications

©)

©)

©)

©)

O

O

O

O

Generating Program

Instructions

> High-Level Language & Interpreter/Compiler

Software

° - Program steps are written using languages such as Basic, Fortran, C,
etc.

° - Program steps use standard verbs, commands, and syntax for that

language.

- Labels and variables are used rather than referring to specific

instructions, registers, or memory locations.

° - Program steps are not specific to any microprocessor model or family.
- Author needs no knowledge of the underlying processor architecture
- Requires knowledge of the language vocabulary & syntax

- Faster to write, modify, debug, and document

- Only the compiler portion of the software is specific to the
microprocessor model or family.

- Debugging and emulator software tools are usually available as part
of the compiler software package.

(@)

@)

(@)

@)

(@)

(@)

Questions?

> Thanks for your attention!

	Slide 1
	Microprocessors
	Binary Logic & Numbers
	Numbering System Basics
	Numbering System Basics
	Numbering System Basics
	Numbering System Basics
	Counting in Base 2
	Binary Shorthand- Hexadecimal
	Components of a Microprocessor System
	Microprocessor System
	Microprocessor Internal Diagram
	Microprocessor Instructions
	Microprocessor Instructions
	Instruction Execution
	PIC 24FV16KM204 Block Diagram
	Generating Program Instructions
	Generating Program Instructions
	Generating Program Instructions
	Questions?

