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Microprocessors

> A “Computer On A Chip”

> The world’s first microprocessor- the 4004
was invented in 1971 by Intel

> In the 45 years since, microprocessors have
become smaller, faster, more powerful,
cheaper, more prevalent, and easier to use.

> Let’s look at what is inside a
microprocessor. But first, let’'s review the

__ type of numbers that microprocessors use.




Binary Logic & Numbers

> Microprocessors operate using binary (two-
state) logic

> It Is much easier for electronics to detect
the presence or absence of a voltage (two
states) than it is to measure the magnitude
of a voltage and assign a value to it from a
range of discrete steps.

> Thus, microprocessors perform all internal
calculations and logic operations using a
Base 2 numbering system




Numbering System Basics

> The Base of a number system specifies how
many unique values are contained in one digit.

> We normally use a Base 10 numbering system
In our everyday lives.
> There are 10 values within a single digit (0-9)

> In a Base 2 (binary) numbering system, there
are 2 values within a single digit (0-1)

> When counting upwards, when we reach the
largest value for a digit, we carry a “1” into
the next digit to the left.




Numbering System Basics

> Each digit position corresponds to an
exponential power of the Base

For Base 10

— 1041 x104 = 1x 10000 = 10000
— 109 x103 = 9x 1000 = 9000
1024x102 = 4x 100= 400
10+0-x10t = Ox 10 = 00

1009 3r<—}6° 3 X 1= 3

194 0 3.




Numbering System Basics

> Each digit position corresponds to an
exponential power of the Base

For Base 2

24—1x24 = 1x 16 =16
— 23 0x2> = 0Xx = 0
221 x2> = 1X = 4
21 1 x21 = 00X = 0
20 1rd-“=1x = 1

101 01.




Numbering System Basics

> Base 2 compared to Base 10
° A Base 2 number usually requires more digits to represent
the same value as a Base 10 number
> Base 2 (binary) values are easier for the microprocessor to
understand
° Base 2 values are harder for humans to understand
° Base 2 doesn’t use fractions! 0/0, 0/1, 1/0, 1/1

g Blnary Definitions
° One Binary diglT is called a BIT
° A group of 4 bits is called a NIBBLE
° A group of 8 bits is called a BYTE (2 nibbles = 1 byte)
° A BIT may represent a logic state (on/off or true/false) or a number




Counting Iin Base 2

Binary Base 10 Base 16

0

1

10

11
100
101
110
111
1000
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
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Binary Shorthand-
Hexadecimal

> In order to reduce the length of a binary number,
we can group 4 binary digits (bits) together and
represent them with a single Base 16 diqgit.

215 212 21 28 27 24 23 20
1001 1111 0111 0001

9 F 7 1

163 162 161 160
=9 x4096 = 36864
= Fx 256 = 3840
=7x 16 = 112

1 1




Components of a
Microprocessor System

> Data Bus
> Address Bus
> Program Memory
> Data Memory
> Program Counter
> Instruction Register & Decoder
> Arithmetic Logic Unit
> Accumulator Register
> Flag Register
> General Purpose Registers
> Stack Pointer
> Clock
> Control Inputs & Outputs
> Program Instructions
~__ " Input & Output Peripherals




Microprocessor System
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Microprocessor Internal
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Microprocessor
Instructions

> Microprocessor instructions are very low-level
and simple.

> The instruction set is specific to the hardware
architecture of the microprocessor. Thus, each
microprocessor model has a unique instruction
set.

> Instructions are coded as groups of binary
digits. The groups are usually a multiple of 8
bits.

> The binary value for each instruction is called
- Its operational code, or opcode.




Microprocessor
Instructions

> For our example 8080 processor, the

Instructions are classified as follows:

° Move, Load, & Store

> Stack Operations

°Jump Instructions

° Call & Return

°Increment & Decrement

> Add & Subtract

° Logical

> Rotate/Shift

° Input & Output
~___ ° Special & Control




Instruction Execution
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PIC 24FV16KM204 Block Diagram

PIC24FV16KM204 FAMILY

FIGURE 1-1:

PIC24FXXXXX FAMILY GENERAL BLOCK DIAGRAMS
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Generating Program
Instructions

> Three methods for creating the software
instructions (a.k.a. The Program)

> Manual Machine Coding
° - You supply the Binary Operation Codes
- You keep track of the memory location for each instruction
- You keep track of register and stack usage
- Program jumps are to absolute addresses, not labels
- Requires knowledge of the processor architecture
- Very specific to one microprocessor model
- Tedious and error-prone
- Difficult to make changes
- Not easy to debug & document
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Generating Program

Instructions

> Assembler Software
° - You write the program steps as symbols or Mnemonics
° - The assembler provides the op codes
° - The assembler software keeps track of the addresses
° - You keep track of register and stack usage

- Labels are used identify specific instructions

- Program jumps are made to labels, not addresses

> - Requires knowledge of the processor architecture

- Usually specific to one microprocessor family

- Less tedious and error-prone than machine coding

- Easier to make changes

- Easier to debug & document

- Assembler software is specific to the microprocessor model

- Debugging and emulator software tools are often available as part of
the assembler software package.

= - Typically used for timing or resource-critical applications
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Generating Program

Instructions

> High-Level Language & Interpreter/Compiler

Software

° - Program steps are written using languages such as Basic, Fortran, C,
etc.

° - Program steps use standard verbs, commands, and syntax for that

language.

- Labels and variables are used rather than referring to specific

instructions, registers, or memory locations.

° - Program steps are not specific to any microprocessor model or family.
- Author needs no knowledge of the underlying processor architecture
- Requires knowledge of the language vocabulary & syntax

- Faster to write, modify, debug, and document

- Only the compiler portion of the software is specific to the
microprocessor model or family.

- Debugging and emulator software tools are usually available as part
of the compiler software package.
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Questions?

> Thanks for your attention!
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